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critical transitions in intensive care 
Units: A Sepsis case Study
pejman f. Ghalati1, Satya S. Samal1,3, Jayesh S. Bhat1, Robert Deisz2, Gernot Marx2 & 
Andreas Schuppert1

the progression of complex human diseases is associated with critical transitions across dynamical 
regimes. these transitions often spawn early-warning signals and provide insights into the underlying 
disease-driving mechanisms. in this paper, we propose a computational method based on surprise 
loss (SL) to discover data-driven indicators of such transitions in a multivariate time series dataset 
of septic shock and non-sepsis patient cohorts (MiMic-iii database). the core idea of SL is to train a 
mathematical model on time series in an unsupervised fashion and to quantify the deterioration of the 
model’s forecast (out-of-sample) performance relative to its past (in-sample) performance. considering 
the highest value of the moving average of SL as a critical transition, our retrospective analysis revealed 
that critical transitions occurred at a median of over 35 hours before the onset of septic shock, which 
suggests the applicability of our method as an early-warning indicator. furthermore, we show that 
clinical variables at critical-transition regions are significantly different between septic shock and non-
sepsis cohorts. therefore, our paper contributes a critical-transition-based data-sampling strategy that 
can be utilized for further analysis, such as patient classification. Moreover, our method outperformed 
other indicators of critical transition in complex systems, such as temporal autocorrelation and 
variance.

Certain biological systems exhibit nonlinear dynamics that undergo sudden regime transitions at tipping 
points1,2. In a medical context, these transitions often indicate changes in clinical phenotypes, e.g., disease-onset3. 
Such phenomena have been studied mathematically with techniques from the application of singularity theory 
to dynamical systems4–6. In addition, data-driven methods use statistical indicators known as early-warning sig-
nals to model the dynamics of systems approaching transitions7–14. Modeling such transitions is beneficial for 
several applications in systems medicine, such as monitoring health15,16, predicting disease-onset and gaining an 
improved understanding of the underlying disease progression17.

Our focus is on sepsis, a common complication in the intensive care unit (ICU), and we introduce a notion 
of regime transition in septic dynamics. As stated in the Third International Consensus Definitions of Sepsis and 
Septic Shock (Sepsis-3), “sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to 
infection”, and “septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic abnor-
malities are profound enough to substantially increase mortality18”. Sepsis causes a high rate of in-hospital mortal-
ity and costs the healthcare sector billions due to rising incidence rates and prolonged hospital stays19,20. Accurate 
diagnosis, however, remains a challenging task for physicians due to the heterogeneity of infectious agents and the 
frequent presence of multiple comorbidities. Early, aggressive administration of antibiotics is crucial, and delays 
in this treatment significantly increase mortality21,22.

To detect signs of sepsis early, numerous illness severity scores or early-warning signals exist: the Acute 
Physiology and Chronic Health Evaluation (APACHE II), the Simplified Acute Physiology Score (SAPS II), the 
Sepsis-related Organ Failure Assessment Score (SOFA), the Modified Early Warning Score (MEWS), and the 
Simple Clinical Score23. These scores are good predictors of general disease severity and mortality but cannot 
estimate the risk of developing sepsis with reasonable sensitivity and specificity23.

Numerous machine learning (ML) methods were therefore developed to predict sepsis onset24–26. Rothman 
et al.27 used structured information from electronic health records (EHRs) to identify sepsis on admission or to 
predict its onset during hospitalization. For septic shock prediction, Ghosh et al.28 proposed an integrative model 
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combining sequential contrast patterns with coupled hidden Markov models. Henry et al.23 developed a targeted 
real-time early-warning score (TREWScore) by training a Cox regression model to identify patients at high risk 
of developing septic shock. Additionally, Horng et al.29 argued that combining free-text patient data with other 
predictor features significantly improved the performance of ML models. Although these ML approaches have 
the potential to increase diagnostic accuracy, they involve time-consuming and domain-specific variable/feature 
selection30,31. Our proposed method can be considered in the preprocessing stages to select appropriate data for 
further downstream analysis.

Our computational method aims to identify and characterize signals indicative of critical transitions based 
on the concept of surprise loss (SL)32. SL was originally developed in econometrics to assess forecast breakdown, 
i.e., instability in the model’s forecasting ability. Such instability was attributed to instability in the underlying 
data-generating process, whose effects have been studied from a mathematical perspective33,34. We assume that 
similar instability occurs in patient data because of changes in the underlying biological mechanism due to med-
ical intervention or disease progression.

We utilize SL to identify regions in the time series where the data-generating process changes and quan-
tify them with a numerical score. The score captures the extent of deviation between the past performance 
of a model and its future performance. We consider the highest value of such a score to be a putative tipping 
point in the disease dynamics, and we consider it as a surrogate for critical transition. In addition, we present a 
critical-transition-based data-sampling strategy is also presented where data are sampled at regions around criti-
cal transition; this strategy outperforms random sampling in differentiation between septic shock and non-sepsis 
patients. We also compare our approach to methods based on autocorrelation and variance7,15,16,35, which have 
been used to identify early-warning signals of critical transitions.

Materials and Methods
Data source. We sourced patients’ multivariate time series data from the publicly available EHR database, 
Medical Information Mart for Intensive Care MIMIC-III v1.436, which contained longitudinal data of 46,520 
deidentified patients from 58,976 distinct ICU admissions. For ease of interpretation, we treated each admission 
as a distinct patient.

In the ICU, clinical staff make swift decisions or take prompt actions during patient management. These 
employees prioritize timely and correct treatment over consistent documentation of their processes, thereby lim-
iting the reliability of clinical annotation for retrospective analysis. Furthermore, the execution of guidelines for 
identifying imminent disease varies across hospitals. Hence, we restricted our data analysis to predominantly 
machine-recorded quantitative variables.

Decision rules for retrospective annotation of the sepsis syndrome have evolved over the decades as knowl-
edge of its pathophysiology and epidemiological impact have increased37. Whereas earlier definitions (199138, 
200139) focused on uncontrolled systemic inflammation as the major indicator, the latest 201618 definition, com-
monly known as Sepsis-3, emphasizes organ dysfunction as the leading effect of the sepsis syndrome and pro-
poses to update the International Classification of Diseases (ICD) coding system40,41 (ICD-9: 995.92, 785.52; 
ICD-10: R65.20, R65.21). SOFA scoring system grades the extent of organ dysfunction and is calculated every 
24 hours during a patient’s ICU stay42,43.

Because the ICD-9 codes in our data were not compatible with Sepsis-3, we annotated the patient data in 
accordance with Table 2 from the 2016 consensus definition18. Fig. 1 illustrates a general schematic of our anno-
tation framework.

The annotation framework was applied to all 58,976 patients, identifying 22,547 (38.2%) sepsis patients and 
3208 (5.4%) septic shock patients. Among the 3208 septic shock patients, we analyzed only adults (18+ years old 
at admission) with at least a 36-hours stay and at most 144 hours spent in the unit before onset, which generated 
a cohort of 630 patients. Our non-sepsis cohort comprised 6,236 patients who lacked Sepsis-3 annotation or 
sepsis-specific ICD-9 codes and who stayed between 36 and 144 hours in the ICU. Demographic information on 
the two cohorts can be found in Supplementary Table S1.

We cannot exhaustively evaluate and validate the accuracy of our annotation framework owing to the absence 
of a manually curated “ground truth” dataset of Sepsis-3 patients. Software implementations with different data 
cleaning processes and patient exclusion criteria (PEC) from the same annotation framework could result in 
divergent cohorts. For example, for the same database, another implementation44 annotated almost half (49.1%) 
of their analysis cohort (n = 11,791; reasonable PEC) as Sepsis-3, whereas our implementation annotated approxi-
mately 38% of the entire population (n = 58,976; no PEC). There may be a high degree of overlap in the annotated 
cohorts; thus, a comparison of the two implementations is currently under way.

Based on availability and relevance to sepsis, we preselected groups of variables: the laboratory variables 
included bicarbonate, creatinine, blood urea nitrogen (BUN), hematocrit, hemoglobin, platelet count, white 
blood cell count (WBC), potassium, and sodium; the vital signs and physiological variables comprised body 
temperature, heart rate, respiratory rate, oxygen saturation (SpO2), arterial blood pressure (systolic, mean, and 
diastolic), and urine output; the two septic markers comprised the shock index (ratio of heart rate over systolic 
blood pressure), and the ratio of BUN to creatinine23. Table 1 shows the mean sampling rates of the variables in 
the respective patient cohorts, and their distribution can be seen in Supplementary Fig. S1.

Missing value imputation and time binning. Data representation is a crucial step in analyzing time series. 
Continuous EHRs suffer from missing values due to insufficient data collection and lack of documentation. 
Additionally, high heterogeneity in variable type and irregular sampling intervals make such data difficult to 
handle. To address the problems of missing data and data sparsity, we transformed our time series into 30-minute 
time bins by imputing values in the bins and averaging measurement values over the bins. We experimented with 
different imputation methods, such as linear, polynomial and Stineman interpolation45. The Stineman method 
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was chosen due to its superior performance in reducing overshoots and handling sharp changes in the imputed 
values.

Data normalization. Our variables (Table 1) had different scales and measurement units. Data normalization 
was therefore needed for our method. For this purpose, we transformed the observables by Z-score normalization 
to address the use of different units of measurement.

State space model. To define SL, we require a dynamical mathematical model for our multivariate clinical 
time series. Here, we consider a state space model (SSM) approach46,47, which models the data in a hierarchical 
manner with hidden states that give rise to observables. In our context, the hidden states can be assumed to repre-
sent the biological processes, and the observables represent the clinically measured variables. The observables in 
our SSM are expressed as linear combinations of hidden random states. Such a model incorporates the variations 

Figure 1. Over the length of a patient’s ICU stay, all timestamps of body fluid (blood, urine, cerebrospinal 
fluid) sampling and antibiotic administration were retrieved. For each of the timestamps, an infection was 
suspected if antibiotics were administered within 72 hours of any prior body fluid sampling (irrespective of 
culture findings) or if any body fluids were sampled within 24 hours of prior antibiotic administration. Sepsis-3 
criteria were independently evaluated over time windows around the infection-suspected timestamps (IST). 
Each time window began 48 hours prior to IST until 24 hours post IST. If the criteria were satisfied during a 
given time window, then the beginning of the window was annotated as the onset time. In the schematic, the 2nd 
antibiotics administration falls within 72 hours of previous body fluid sampling; thus, an infection is suspected.

Variable

Sampling Rate per Day

Septic Shock Non-Sepsis

BUN 1.7 1.1

Creatinine 1.7 2.6

Hemoglobin 1.9 5.0

Bicarbonate 1.7 1.5

Respiratory Rate 20.5 4.4

Heart Rate 20.2 9.8

Hematocrit 2.2 8.2

WBC 1.5 9.2

SpO2 20.1 8.1

Platelets 1.6 5.3

Systolic BP 19.8 9.3

Urine Output 12.1 10.2

Temperature 6.7 9.1

Sodium 2.0 3.2

Diastolic BP 19.8 10.4

Mean BP 20.0 6.6

Potassium 2.5 3.8

Table 1. Mean sampling rate of the preselected clinical variables in the septic shock and non-sepsis cohorts. For 
a single patient, the sampling rate was the ratio of the number of observations recorded in the ICU to the length 
of the patient’s stay (in days). The rate was then averaged over all the patients in the respective cohorts.
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in the biological processes and a measurement noise term. The variations due to biology are modeled by adding a 
stochastic term to the hidden states, whereas the measurement noise term is added to the observables. Both terms 
are assumed to follow a multivariate normal (MVN) distribution.

The computation of SL is agnostic to the underlying dynamical model. The SL literature32 uses a linear dynam-
ical model, whereas we use an SSM for our application. The primary reason to use this type of model is to separate 
the biological processes from the observables, i.e., to model two sources of variability. Below, we represent such 
an SSM model.

π= + ∧
= + +

− ~ ~

~

x x w w MVN Q x MVN
y Zx a v v MVN R

where (0, ), ( , )
where (0, ) (1)

t t t t

t t t t

1 0

where the indices of the time series are from t = 1, …, T; e is the number of hidden trends; x is an e × T matrix of 
hidden states; y is an n × T matrix of n observables; and w is an e × T matrix of process error. In general, e n. 
The process error at time t follows an MVN distribution with mean 0 and e × e covariance matrix Q; v is an n × T 
matrix of observation error. The observation error at time t follows an MVN distribution with mean 0 and n × n 
covariance matrix R; Z is an n × e parameter matrix; a is a vector of offsets; π is a matrix of e × 1 means; ∧ is an 
e × e covariance matrix. The set of parameters can be represented in compact form as θ = (Q, R, Z, x1, …, T, π, ∧), 
and their estimate is θ̂ . ŷt and 

λ+yt  are the estimate and λ-step-ahead forecast, respectively, of the given observa-
bles yt.

Our implementation incorporated MARSS48,49, which is an R package for fitting constrained and unconstrained 
linear multivariate autoregressive SSMs by maximum likelihood parameter estimation. We utilized MARSS to fit an 
SSM to our multivariate time series data, using its recommended initial conditions that ensure parameter identifia-
bility. We assumed the presence of multiple hidden states and fixed e = 3. Furthermore, we evaluated the robustness 
of our results with respect to the changes in the model parameters (see ‘Robustness of the SSM model’).

perturbations in the dynamics. Early-warning indicator. Our proposed computational method based on 
surprise loss (SL)32 computes the difference between the forecast error, i.e., out-of-sample error, and the in-sample 
performance. The out-of-sample error measures the quality of model forecasts, i.e., the prediction of the model 
for the data that were not used for fitting, whereas the in-sample error quantifies the deviation between the model 
estimates and the data that were used for model fitting. A high out-of-sample error compared to the in-sample 
error is suggestive of instability in the patient data. In such a scheme, our model may be a poor fit for the data, but 
we are interested in evaluating whether the past performance of the model is consistent with future forecasts. The 
performance is measured for a fixed loss function using a moving time window. Furthermore, the SL computation is 
unsupervised, i.e., the clinical conditions of patients, such as septic shock or non-sepsis, are not required. Originally, 
the idea of SL was used to perform a statistical test to determine forecast breakdown in time series, i.e., to determine 
whether the average of SL is close to zero32. However, in our application, the aim is not to test whether a given time 

Variable BF (SL) BF (AC1) BF (VAR)

BUN 0.98 0.88 0.95

BUN-Creatinine 1.00 0.20 0.43

Creatinine 0.94 0.98 1.00

Hemoglobin 0.86 0.85 0.07

Hematocrit 0.99 0.81 0.09

Shock Index 0.99 0.03 0.72

Respiratory Rate 0.75 0.82 0.61

Heart Rate 0.75 0.09 0.62

Systolic BP 1.00 0.03 0.40

Bicarbonate 0.1 0.89 1.00

Platelets 0.35 0.15 0.08

Temperature 0.99 0.86 0.93

Urine Output 0.20 0.97 0.66

WBC 0.75 0.97 1.00

Mean BP 0.97 0.05 0.37

SpO2 0.91 0.89 0.71

Diastolic BP 0.85 0.06 0.57

Sodium 0.42 0.34 0.16

Potassium 0.82 0.04 0.13

Table 2. A statistical significance test (see ‘Data-sampling strategy with SLMean’) was performed to test 
whether the values of clinical variables at largest SLMean, AC1 and VAR were able to statistically differentiate 
septic shock patients from non-sepsis patients, and a bootstrap test was performed to calculate the fraction 
of replications where the tmax p-values were less than the p-values from a random sampling. The columns of 
the table show the result achieved by each variable: BF (SL), BF (AC1) and BF (VAR). The highest BF for each 
clinical variable is shown in bold.
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series underwent a statistically significant forecast breakdown; rather, it is to identify high SL values in the given time 
series and later use this information in postprocessing steps (see ‘Data-sampling strategy with SLMean’).

In spirit, this approach is close to the identification of structural breaks or change-points analysis50,51. However, 
the SL-based approach has the additional advantage of being robust to model misspecification. Specifically, in 
practice, the SSM model (i.e., the functional form and variables) is likely to be misspecified and may not be a 
good approximation of the underlying disease processes. By formalizing SL as the difference between in-sample 
and out-of-sample performance and not relying on model parameters or error variances, the SL-based approach 
provides a natural way to handle such scenarios (see ‘Relationship with the literature’ in Giacomini et al.32).

With a moving time window of width m, the SSM model (see equation (1)) was fitted for time indices 
− + …t m t1, , . yt

ic denotes the observables of a given patient i with clinical condition c at time index t, and T ic 
is the length of the corresponding time series. The in-sample error is a quadratic loss function that averages the 
squared differences between the estimated and the given observables, and it is denoted as 

θ = ∑ −=
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To remove short-term fluctuations, a moving-average filter (with size δ) smooths the SL:
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For a given patient i, prior to the clinically annotated onset of disease c, a relatively high SLMeant
ic suggests 

putative transitions across dynamical regimes and serves as an early-warning indicator. We consider the maxi-
mum of SLMeanic at time index tmax

ic  to denote a critical transition. Fig. 2a illustrates the calculation of SLic, 
SLMeanic and tmax

ic . A simulated example using synthetic data is shown in Fig. 3.

Uncertainty in SLMean. Uncertainty in out-of-sample forecasting and in-sample performance adds noise to the 
precise location of tmax

ic . Let tmax up
i

( )
c  and tmax low

i
( )

c , respectively, be the time indices corresponding to the modes of 
the upper and lower bounds of the 95% prediction interval of SLMean. Our approach is robust if the deviations of 
tmax

ic  from tmax up
i

( )
c  and tmax low

i
( )

c  are close to zero.

Data-sampling strategy with SLMean. Here, we demonstrate a method for sampling data from the crit-
ical transition points (derived from SLMean) to differentiate the septic shock cohort from the non-sepsis cohort 
(see Fig. 2b). We also propose a bootstrap test (based on a random sampling of data) to evaluate whether it out-
performs the SL-based approach. Such a data selection step can be seen as a preprocessing step for the machine 
learning-based techniques being developed to study sepsis (as described in ‘Introduction’). The data sampling step 
is agnostic to the clinical condition of the patient, i.e., data for each patient are based on SL (see ‘Perturbations in 
the dynamics’), and in a subsequent step, we used the clinical condition to perform statistical tests.

Specifically, we selected the data at tmax
ic , i.e., the critical transition points (in the case of multiple tmax

ic  values, 
the one closer to the disease-onset was selected), sampled the corresponding data and represented them as an 
n × v variable matrix = …S y y[ , , ]c

t t
v1

max
c

max
c  where c ∈ {0, 1} i.e., non-sepsis and septic shock conditions, and v is the 

total number of patients. Thereafter, for each variable, a p-value based on Wilcoxon rank-sum test52 was calcu-
lated, quantifying the significance of differences between the two patient cohorts (as shown in the equation (4)).

= …p pval S S pval S S( ( , ), , ( , )) (4)n n1
0

1
1 0 1

where pval(.) returns the p-value based on the Wilcoxon rank-sum test. Sj
0 and Sj

1 denote the jth row vectors of 
matrices S0 and S1 matrices, respectively. Furthermore, we performed the Benjamini and Hochberg correction 
method to adjust the p-values53 accounting for multiple comparisons.

Bootstrapping. Furthermore, a bootstrap test was used to compare the p-values calculated at critical transi-
tion points from the p-values that were obtained from random points in our time series. For a randomly selected 
time index t with its corresponding observation yt

ic, where ∈t T(1, )ic , the trandom p-values were calculated by 
replacing tmax with t. The test was repeated 1000 times. Bootstrap frequency (BF) denotes the fraction of replica-
tions wherein tmax p-values were less than trandom p-values. A high BF value indicates that the SL based approach 
has an advantage over the random approach. In addition to computing the BF on data randomly sampled from all 
times, we computed BF on randomly sampled data of septic patients from two arbitrary time intervals, 36 hours 
and 18 hours before the onset of septic shock. This step allows us to test whether merely randomly sampling data 
close to the onset time can outperform the SL approach.

Autocorrelation and variance as early-warning signals. In the dynamics of a system, increased tem-
poral autocorrelation and increased variance are hypothesized to be two indicators that the system is approaching 

https://doi.org/10.1038/s41598-019-49006-2


www.manaraa.com6Scientific RepoRtS |         (2019) 9:12888  | https://doi.org/10.1038/s41598-019-49006-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2. (a) A schematic for the calculation of SLic, SLMeanic, and tmax
ic  for a given patient i and clinical 

condition c. The SSM was fitted with a moving time window of length m (as shown in blue) and the SLic was 
calculated. A second sliding window of length δ was used to compute the SLMeanic (as illustrated in green). The 
T ic denotes disease onset in septic shock patients and it represents the time of discharge or death in non-sepsis 
patients. The tmax

ic  denotes the time index of the highest SLMeanic and it was used in our data-sampling approach. 
(b) A schematic diagram illustrating our data-sampling strategy using our method. Observables at the time of 
highest SLMean magnitudes, i.e., critical transition points, were selected from septic shock and non-sepsis 
patients. The Wilcoxon rank-sum test was used to determine the statistical significance of the changes in the 
observables.
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a state transition7. To evaluate the SL concept, we calculated these two presumed early warning signals and com-
pared the results with those obtained from the SL approach. As these measures are both univariate, to apply them 
to our multivariate time series data, we formulated them as follows:

∑= = …
=

AC
N

AC y k t m T1 1 ( ( ) ) for , ,
(5)t

i

k

N

t
i i

1

c c c

∑= = …
=

VAR
N

Var y k t m T1 ( ( ) ) for , ,
(6)t

i

k

N

t
i i

1

c c c

where AC and AC1 are autocorrelation and variance functions applied on variable y(k) for time indices 
− + …t m t1, , . t is the time index, and m is the width of a moving time window. The first coefficient of 

auto-correlation AC1t
ic and variance VARt

ic were computed by averaging over N variables. i is the index of a given 
patient with clinical condition c, and T ic is the length of the corresponding time series.

Similar to the SL concept, tmax is defined as the time index where the highest value of the early-warning signal 
occurs (here, the largest value of AC1ic or VARic). P-values and bootstrap frequencies were computed as described 
in ‘SLMean-based data-sampling strategy’ and ‘Data-sampling strategy with SLMean’.

Software. To support reproducible research, our computational method is available at https://github.com/
JRC-COMBINE/SL-MTS.

Results
SLMean as an early-warning indicator. Over a moving time window (m = 36, i.e., 18 hours; e = 3; λ-step-
ahead = 1, i.e., 30 minutes; δ = 6, i.e., 3 hours), the SLMeanic values (‘Perturbations in the dynamics’), as shown in 
Fig. 4, were computed. A positive SLMeant

ic indicates higher out-of-sample error than in-sample error, signaling 
putative transitions in the underlying dynamics. The componentwise mean vector and associated standard devi-
ation of all septic shock patients, i.e., …SLMean SLMean, , N1c c (where N is the total number of septic shock 
patients and c is the septic shock clinical condition), intensified as the moving time window approached the dis-
ease onset. For the same cohort of septic shock patients, a slight increase in the componentwise mean vector and 
associated standard deviation of …VAR VAR, ,i Nc c could be seen, while those of …AC AC1 , , 1N1c c did not show 
any changes over time. The findings are summarized in Fig. 5.

It should be taken into account that the largest SLMeant
ic need not necessarily occur exactly at the time of 

disease onset. For septic shock patients, the location of the time index tmax from the onset time (T) is shown in 
Fig. 6b. In the majority of our patients’ data, the highest SLMean occurred near septic shock onset (60% of the 
patients, the signal occurred less than 48 hours prior to onset, as shown in Fig. 6b). However, in some patients, the 
signal was observed beyond onset time. Possible explanations include a lack of records or a low sampling rate of 
variables a few days before the onset of septic shock, resulting in a nonsignificant SLMean. The highest SLMean, 
on average, occurred 46 hours (median of 35.6 hours) prior to the appearance of septic shock symptoms. In com-
parison, TREWScore23 identified septic patients at a median of 28.2 hours before onset.

Figure 3. Artificial example showing the calculation of SLMean from a synthetic dataset that was generated by 
concatenating 50 points, drawn independently from three univariate normal distributions with different means 
(5, 10, 15) and a standard deviation of 0.5. Computed with a moving time window of length 30 and the number 
of hidden states set to 1, the magnitude of SL intensified at the 50th and 100th time-points, where the parameters 
of the data-generating process changed, i.e., a proxy for transitions across different dynamical regimes.
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While the median time of the peak SLMean occurred at 35.6 hours before the onset of septic shock, visual 
inspection of the mean and standard deviation of SLMean indicates an upward trend starting from approximately 
24 hours (Figs 5a and 6a). The explanation for the apparent deviation from the baseline is that the highest 
SLMeant

ic values that occurred closer to onset were greater in magnitude.
Furthermore, we determined the uncertainty in SL calculation using prediction intervals (as described in 

‘Uncertainty in SLMean’). Our results show negligible deviation in tmax i.e., the median deviation is 0, and the 
interquartile range (IQR) is 5.4 hours.

SLMean-based data-sampling strategy. We compared the p-values for data sampled at tmax (i.e., criti-
cal transition point) to those obtained via random sampling (see equation (4) and ‘Data-sampling strategy with 
SLMean’). The same procedure was implemented for AC1 and VAR, and the bootstrap test was performed for 
all time indices. The bootstrap frequencies were denoted as BF (SL), BF (AC1) and BF (VAR), respectively (see 
Table 2). The different BF computations test the association of the bootstrap frequency values of some variables 
with high SLMean, AC1 and VAR. In 14 out of 19 variables, BF (SL) demonstrates superior results. In the next step, 
in addition to all the time indices, the bootstrap test was performed for time-windows of 18 and 36 hours before 
the onset of septic shock; the bootstrap frequencies are represented as BF (Full), BF (18 hours), and BF (36 hours). 
Fig. 7a plots BF (Full) against p-values computed at trandom and at high SLMean (i.e., tmax). Most of the variables 

Figure 4. The changes over time in a group of clinical variables used in this study and the corresponding 
computed SLMeanic of a sample septic patient before the onset of septic shock (violet line). The SLMeanic is 
calculated over a moving time window (m = 36, i.e., 18 hours; e = 3; λ-step-ahead = 1, i.e., 30 minutes; δ = 6, i.e., 
3 hours). The red line shows the time location (tmax

ic ) of the largest SLMeanic (i.e., the critical transition point).
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show a good BF with high log-transformed p-values when sampled at large SLMean, particularly in the case of 
variables such as blood pressures, temperature and SpO2, where random sampling leads to poor p-values. As the 
random sampling strategy changed to either to 36 or 18 hours in Fig. 7b, BF reduced for six variables (WBC, dias-
tolic blood pressure, Hemoglobin, SpO2, creatinine, and BUN), but it was preserved for nine variables (respira-
tory rate, heart rate, potassium, mean blood pressure, hematocrit, shock index, temperature, BUN-creatinine, and 
systolic blood pressure), i.e., the differences among BF (Full), BF (36 hours), and BF (18 hours) were small. Four 
variables, bicarbonate, urine output, platelets and sodium, had low BF (Full), BF (36 hours), and BF (18 hours).

Robustness of the SSM model. We assessed the robustness of our method to perturbations in the model 
parameters. We changed the length of the moving time window, m ∈ (24, 30), and the number of trends in the 
SSM model (e ∈ (4, 5)) and compared the changes in the tmax with respect to the reference setting, i.e., m = 36 and 
e = 3. The chosen values of e are based on the assumptions described in ‘State space model’ (e = 3 and e n). The 
length of the moving time window was selected with regard to the average variables sampling rate (see Table 1, as 
well as the length of hospitalization in the ICU (see ‘Data source’). The differences in tmax due to the perturbations 
are summarized in online Supplementary Fig. S2. The zero median of such differences confirmed the robustness 
of our approach. Due to multiple similar high values SLMean in some patients, alteration of model parameters led 
to different tmax values in these patients, which caused the outliers in online Supplementary Fig. S2.

Figure 5. Componentwise mean (red dots) and ±standard deviation (blue lines) of (a) SLMean (b) AC1 and  
(c) VAR for all septic shock patients prior to disease-onset (see ‘SLMean as an early-warning indicator’); T is the 
length of the time series (i.e. max( …T T, , N1c c), where c = 1 represents septic shock condition and N is the total 
number of septic shock patients), and t − T is the time before the onset of septic shock. The number of samples 
per time point could be different due to the heterogeneous length of hospitalization (see ‘Data source’). As the 
maximum length of hospitalization was 144 hours, with a moving time-window length of 18 hours and an 
average window of 3 hours, the minimum value of t − T was −123 hours.

Figure 6. (a) Componentwise mean of SLMean for all septic shock patients prior to disease-onset (see ‘SLMean 
as an early-warning indicator’); T is the length of the time series, (b) Distribution of the times of critical 
transitions from the onset times of septicshock, i.e. − … −t T t T, ,max max

N N1 1c c c c, where c = 1 represents septic 
shock condition and N is the total number of septic shock patients. SLMeanic reaches a maximum at tmax

ic .
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Discussions
Healthcare can benefit from the analysis of continuously monitored health data, which are rapidly growing in 
quantity due to the increasing availability of long time series collected either by wearables or by monitoring sys-
tems such as those established in the ICU. However, significant challenges remain unresolved. A major drawback 
is the restriction of data availability to variables that are easy to collect by noninvasive sensors. These variables 
provide only correlated surrogates of the primary disease-driving processes. Hence, sensor signals are rarely 
specific on their own; advanced computational processing is typically necessary to identify relevant signals to 
improve therapy.

Focusing data analysis on the prediction and identification of critical transitions, i.e., instabilities in patient 
data, may complement established scoring methods in the classification of stable states. Although critical tran-
sitions differ qualitatively from scores in classifying stable states, the former method provides an independent 
assessment of health status. Because critical transitions are simply identified through the evolution of individual 
longitudinal time series, in contrast to established scores based on absolute variable values, markers for the detec-
tion of critical transitions are relatively robust to normalization and data standardization issues.

To identify such critical transitions in ICU patients, we applied the concept of surprise loss (SL), which was 
originally developed for determining instability in a model’s forecasting ability in econometrics. We changed 
the model in the original SL approach to a multivariate SSM model to model two sources of variability, namely, 
the hidden underlying biological processes and the observables. Despite a multitude of interventions in the 
ICU, our moving average SL, SLMean, showed, on average, an increasing signal approximately 24 hours before 
the expert-annotated onset of septic shock (see Fig. 6a), thereby indicating its applicability as an early-warning 
indicator. We utilized such an indicator to devise a critical-transition-based data-sampling strategy for dis-
criminating septic shock from non-sepsis patients. Additionally, through a bootstrap test (quantified through 
BF(Full)), the benefit of our method is shown with respect to a random data selection strategy (as summarized 
in Table 2 and Fig. 7a). Except for bicarbonate, urine output, platelets and sodium, the SL-based approach results 
in better p-values and BF(Full) than the random strategy. In addition, we selectively sampled random data from 
36 hours and 18 hours before the septic onset to compute BF(36 h) and BF(18 h), respectively (see Fig. 7b and 
Supplementary Table S2). Such selective sampling evaluates whether merely sampling data close to the onset 
time of septic shock outperforms our method in distinguishing sepsis from non-sepsis. These new BF values 
seem to be well-preserved for most variables that have correspondingly high BF(Full). Therefore, an SL-informed 
sampling strategy may improve the quality of patient classification and eventually enable the reduction of sample 
sizes.

Moreover, from a systems theory point of view, mechanisms that control the system in homeostasis begin to 
collapse around a critical transition or tipping point. Consequently, variables that are under tight control within 
stable states may be more sensitive to systemic variability around an unstable point. Our data analysis supports 
this hypothesis (see Fig. 7a): some variables under tight control, e.g., blood pressure and body temperature, 
showed significant improvement in p-values compared to random sampling. We compared our method with two 
other univariate early-warning measures for critical transitions in complex systems: temporal autocorrelation and 
variance7,15,16,35. As shown in Fig. 5, our method outperformed these estimators as an early-warning indicator for 

Figure 7. (a) A statistical significance test (see ‘Data-sampling strategy with SLMean’) was performed to 
test whether the values of the clinical variables at largest SLMean were able to differentiate septic shock 
patients from non-sepsis patients. The −log10(P-value) of each variable at tmax was compared with the median 
−log10(P-value) of randomly selected points from the whole sequence. A bootstrap test (denoted as BF Full) 
was performed to quantify the number of times the p-values at tmax are lower than those at trandom. (b) Another 
bootstrap test, performed by randomly sampling points from 18 hours and 36 hours windows prior to the onset 
of septic shock, tested whether low p-values at tmax are an effect of time or a characteristic of regions with high 
SLMean values.
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septic shock patients. Similarly, the p-values and BF of our method were also more favorable than those of the 
other methods (Table 2).

Conceptually, SL computation is based on the premise that the underlying system has a stable stationary 
state and that all observed deviations can be explained as responses to stochastic perturbations. The permissible 
amount of deviation is controlled by the system’s robustness at the time of computation. As a result, SL-based 
analysis can forewarn of a “loss of stability” even before the underlying system has changed its state. In that sense, 
SL provides indicators similar to those from the analysis of critical slowing down35. One drawback is that local 
loss of robustness may neither result in a transition to another state nor indicate a new state. SL-based warning 
systems, in isolation, may thus lead to false alarms and could be improved by combining them with ML classi-
fiers. Additionally, moving-window length restricts the capability of the SL-based warning system, and analysis 
can only be performed only when sufficient data have been collected. Hence, further evaluations must be per-
formed towards utilization of SL-based analysis in practice. As a high SL is not specific and can be generated by 
any sudden event affecting the data, either errors in the monitoring system or health-related covariates, a robust 
characterization of the standard SL patterns characterizing control states is crucial. As sudden, high SL peaks 
can arise from sudden monitoring aberrations, we expect that a threshold-based alarm system might result in 
an unacceptable false positive rate. Therefore, emphasis should be placed on the characterization of SL patterns 
that are representative of the control state, eventually for each individual patient, followed by an AI-based pattern 
classifier. Effectively, this method will result in significant calibration times to setup the alarm system for each 
patient, such that effective training procedures for the learning of the control state patterns might be essential for 
transfer to clinical applications.
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